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DEVELOPMENT OF CURVED-PLATE ELEMENTS FOR THE EXACT
BUCKLING ANALYSIS OF COMPOSITE PLATE ASSEMBLIES INCLUDING
TRANSVERSE-SHEAR EFFECTS

ABSTRACT

The analytical formulation of curved-plate non-linear equilibrium equations including
transverse-shear-deformation effects is presented. The formulation uses the principle of
virtual work. A unified set of non-linear strains that contains terms from both physical
and tensorial strain measures is used. Linearized, perturbed equilibrium equations
(stability equations) that describe the response of the plate just after buckling occurs are
then derived after the application of several simplifying assumptions. These equations
are then modified to allow the reference surface of the plate to be located at a distance z,
from the centroidal surface. The implementation of the new theory into the VICONOPT
exact buckling and vibration analysis and optimum design computer program is described
as well. The terms of the plate stiffness matrix using both classical plate theory (CPT)
and first-order shear-deformation plate theory (SDPT) are presented. The necessary steps
to include the effects of in-plane transverse and in-plane shear loads in the in-plane
stability equations are also outlined. Numerical results are presented using the newly
implemented capability. Comparisons of results for several example problems with
different loading states are made. Comparisons of analyses using both physical and
tensorial strain measures as well as CPT and SDPT are also made. Results comparing the
computational effort required by the new analysis to that of the analysis currently in the
VICONOPT program are presented. The effects of including terms related to in-plane
transverse and in-plane shear loadings in the in-plane stability equations are also
examined. Finally, results of a design-optimization study of two different cylindrical

shells subject to uniform axial compression are presented.
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CHAPTER1

INTRODUCTION

1.1 Purpose of Study

Longitudinally stiffened plate structures occur frequently in aerospace vehicle
structures. These structures can typically be represented by long, thin, flat or curved
plates that are rigidly connected along their longitudinal edges, see Figure 1.1. The
designs for these structures often exploit the increased structural efficiency that can be
obtained by the use of advanced composite materials. Therefore, the plates used to
represent the structure may consist of anisotropic laminates. The buckling and vibration
behavior of this type of structure must be understood to design the structure.
Additionally, to satisfy the current demands for more cost-effective and structurally
efficient aerospace vehicles, these structures are frequently optimized to obtain an
optimal design that satisfies either buckling or vibration constraints or a combination of
these two constraints. There is a need for analytical tools that can provide the analysis
capability required to optimize panel designs.

The VICONOPT computer code [1] is an exact analysis and optimum design program
that includes the buckling and vibration analyses of prismatic assemblies of flat, in-plane-
loaded anisotropic plates. The code also includes approximations for curved and tapered
plates, discrete supports, and transverse stiffeners. Anisotropic composite laminates
having fully populated A, B and D stiffness matrices may be analyzed. Either classical
plate theory (CPT) or first-order transverse-shear-deformation plate theory (SDPT) may
be used [2]. The analyses of the plate assemblies assume a sinusoidal response along the

plate length. The analysis used in the code is referred to as “exact” because it uses

The journal model adopted for this thesis follows the technical report style and format of
the NASA Langley Research Center.



stiffness matrices that result from the exact solution to the differential equations that
describe the behavior of the plates.

Currently, VICONOPT approximates a curved plate by subdividing it into a series of
flat-plate segments that are joined along their longitudinal edges to form the complete
curved-plate structure, see Figure 1.2. This procedure is analogous to the discretization
approach used in finite element analysis. The code uses exact stiffnesses for the flat-plate
segments and enforces continuity of displacements and rotations at the segment
connections. Thus, the analyst must ensure that an adequate number of flat-plate
segments is used in the analysis. The next logical step in the development of the
VICONOPT code is to eliminate the need to approximate curved-plate geometries by
flat-plate segments by adding the capability to analyze curved-plate segments exactly.
By adding this capability, the accuracy of the solutions can be improved. Furthermore,
since the curvature of a plate is modeled directly, there will be no need to determine if a
sufficient amount of flat-plate segments have been used to model the curved plate.
Another benefit of adding this capability is that the computational efficiency of the code
will be improved since only one stiffness calculation for the entire curved plate is
required, rather than the several that are currently required for the individual flat plates
that are used to approximate the curved plate. This improvement in computational
efficiency is important for structural optimization. In this thesis, the capability to analyze
curved-plate segments exactly has been added to the VICONOPT code. The present
thesis will describe the methodology used to accomplish this enhancement of the code
and will present results obtained utilizing this new capability.

The procedure used in the present thesis is an extension of the procedure described in
[2]. This procedure involves deriving the appropriate differential equations of
equilibrium for the analysis of fully anisotropic curved plates, including transverse-shear-
deformation effects. These coupled equations are of eighth-order if transverse-shear

effects are neglected, and of tenth-order if transverse-shear effects are included. For the



analysis of flat plates, the coupling of these equations occurs through the laminate
extension-bending B matrix; however, coupling can also be produced by including
curvature terms in the equilibrium equations. The numerical solution technique that was
developed in [2] to solve such systems of equations will apply for either type of coupling,
and the stiffnesses of the plates are derived from the numerical solution to these
equations.

Several features have been added to the VICONOPT code as part of the present
thesis. The current version of VICONOPT only analyzes flat-plate elements based on a
tensorial strain-displacement relation. However, the choice of strain-displacement
relations can affect the contribution of prebuckling forces in curved plates. Therefore, a
unified set of nonlinear strain-displacement relations that contains terms from both
physical and tensorial strain measures is used to derive the plate equilibrium equations.
The unified set of strains is used throughout the derivation of the equilibrium equations,
and the selection of either physical or tensorial strains is achieved by appropriately
setting coefficients in the equilibrium equations equal to one or zero. The option to use
physical strain-displacement relations for the analysis of flat plates is included as well.
Another addition is the treatment of the effects of in-plane transverse and in-plane shear
loadings in the in-plane equilibrium equations. These effects are currently ignored in the
VICONOPT code (see [1]). In the present thesis, an in-plane transverse loading, denoted
N,,, is a loading that acts perpendicular to the longitudinal edges of the plate. The
present study has added the option to include the effects of these loadings in the in-plane
equilibrium equations. Finally, either CPT or SDPT may be used. The SDPT used in
VICONOPT and in the present thesis uses the usual first-order assumption that straight
lines originally normal to the centroidal surface are assumed to remain straight and
inextensional but not necessarily normal to the centroidal surface during deformation of
the plate. All of these features have been implemented such that they are available for

use in the analysis of both flat and curved plates.



1.2 Literature Review

The buckling and vibration analysis of assemblies of prismatic plates has received a
great deal of attention over the last thirty years. One method of analysis for this class of
structure that has been studied extensively is the finite-strip method, FSM [3]. A popular
application of this method involves determining a stiffness matrix for each individual
plate in the assembly and then assembling those individual matrices into a global stiffness
matrix for use in determining the response of the entire structure. This method is
therefore analogous in form to the finite element method {4]. The main difference
between the two methods is that the finite element method discretizes the individual
plates into elements in both the longitudinal and transverse directions. The stiffness
matrix for each individual element is then calculated and assembled into a global stiffness
matrix. In the FSM, the response of the plate in the longitudinal direction is represented
as a continuously differentiable smooth series that satisfies the boundary conditions at the
two ends of the plate. Therefore, discretization of the structure is only required to be
performed in the transverse direction, and depending on the method being used,
discretization of the individual plates may or may not be required [3].

The work in the area of finite strip analysis of assemblies of prismatic plates may be
broadly classified based upon different characteristics of the analysis method used. One
classification distinguishes whether the properties of the individual plates are derived by
direct solution to the equations of equilibrium or by application of potential energy or
virtual work principles, i.e., exact versus approximate methods. Another classification
distinguishes whether classical plate theory (CPT) or first-order shear-deformation plate
theory (SDPT) is used in the analysis. Finally, a distinction may be made as to whether
or not complex quantities are used in the development of the individual stiffness matrices.
A review of the literature in the area of finite strip analysis methods is presented below.

Approximate methods are discussed separately from exact methods.



The approximate FSM was first proposed for the static analysis of plate bending by
Cheung in 1968 [5]. The approximate FSM involves subdividing each plate into a series
of finite-width strips that are linked together at their longitudinal edges in a manner
stmilar to that depicted in Figure 1.2. Separate expressions for in-plane and out-of-plane
displacements as well as rotations about the in-plane x and y axes over the middle surface
of each strip are assumed. Each of these fundamental quantities are expressed as a
summation of the products of longitudinal series and transverse polynomials [3]. The
longitudinal series are typically sinusoidal and are selected to satisfy displacement
conditions at the transverse edges of each strip that match the desired plate boundary
conditions along those edges. The potential energy of an individual finite strip is then
evaluated, and the total potential energy of the plate is obtained by summing the potential
energies of the individual strips. Following the application of any appropriate zero-
displacement boundary conditions at the longitudinal edges, the potential energy is
minimized with respect to each plate degree of freedom to generate the equilibrium
equations for the plate. Displacements are then calculated for a given loading condition
using this system of equations.

The analysis of [5] utilized CPT for the static bending analysis of isotropic plates. In
1971, Cheung and Cheung [6] applied the approximate FSM to the analysis of natural
vibrations of thin, flat-walled structures with different combinations of the standard edge
boundary conditions (i.e., clamped, simply suppoﬁed, or free). Their analysis was based
upon CPT and the displacements in the longitudinal direction were approximated using
the normal modes of Timoshenko beam theory to allow for various boundary conditions
on the transverse edges.

Przemieniecki [7] used an approximate FSM based upon CPT to calculate the initial
buckling of assemblies of flat plates subjected to a biaxial stress state. This method only
considered local buckling modes since it assumed that the line junctions between plates

remained straight during buckling. Plank and Wittrick [8] extended the work of



Przemieniecki by considering global as well as local modes and by admitting a more
general loading state that included uniform transverse and longitudinal shear stress and
longitudinal direct stress that varies linearly across the width of the plate. When in-plane
shear loading is present, a spatial phase difference occurs between the perturbation forces
and displacements which occur at the edges of the plates during buckling. This phase
difference causes skewing of the nodal lines and is accounted for in [8] by defining the
magnitude of these quantities using complex quantities. This method is referred to as a
complex finite strip method.

In 1977, Dawe [9 and 10] used an approximate FSM based upon CPT for the static
and linear buckling analysis of curved-plate assemblies. The plates studied were
isotropic, and in-plane shear loads were not allowed. Morris and Dawe extended this
analysis to study the free vibration of curved-plate assemblies in 1980 [11].

All of the analyses discussed thus far have been based upon CPT. In 1978, Dawe
[12] presented an approximate FSM based upon SDPT [13] for the vibration of isotropic
plates with a pair of opposite edges simply supported. Roufaeil and Dawe [14] and Dawe
and Roufaeil [15] extended this analysis to the vibration and buckling, respectively, of
isotropic and transversely isotropic plates with general boundary conditions. The latter
two analyses admitted the general boundary conditions through the use of the normal
modes of Timoshenko beam theory, as was done in [6].

In 1986, Craig and Dawe [16] considered the vibration of single symmetrically
laminated plates using an approximate FSM based upon SDPT. Dawe and Craig [17]
then extended this analysis to study the buckling of single symmetrically laminated plates
subject to uniform shear stress and direct in-plane stress. This analysis allowed for
anisotropic material properties. General boundary conditions were once again admitted
through the use of the normal modes of Timoshenko beam theory. The analysis of [17]
was extended in 1987 to the vibration of complete plate assemblies [18]. However, it

was shown in this work that the problem size increased dramatically as attempts to



increase the accuracy of the solution were made by further subdivision of the component
plates.

In 1988, Dawe and Craig [19] presented a complex FSM based upon SDPT for the
buckling and vibration of prismatic plate structures in which the component plates could
consist of anisotropic laminates and could be subject to in-plane shear loads. This work
also made use of substructuring to create “superstrips” that eliminated the internal
degrees-of-freedom from each component plate. This analysis was later extended to
consider finite-length structures [20 and 21] and to add multi-level substructuring to
couple several “superstrips” to further decrease the problem size. Dawe and Peshkam
[22] also developed a complementary analysis to that presented in [20 and 21] for long
plate structures. Analyses using both SDPT and CPT were presented. This work also
added the capability to define eccentric connections of component plates.

Wittrick laid the groundwork for the exact FSM in 1968 [23]. The basic assumption
in this work is that the deformation of any component plate varies sinusoidally in the
longitudinal direction. Using this assumption, a stiffness matrix may be derived that
relates the amplitudes of the edge forces and moments to the corresponding edge
displacements and rotations for a single component plate. For the exact FSM, this
stiffness matrix is derived directly from the equations of equilibrium that describe the
behavior of the plate. In [23], Wittrick developed an exact stiffness matrix for a single
isotropic, long flat plate subject to uniform axial compression. His analysis used CPT.
Wittrick and Curzon [24] extended this analysis to account for the spatial phase
difference between the perturbation forces and displacements which occur at the edges of
the plate during buckling due to the presence of in-plane shear loading. This phase
difference is accounted for by defining the magnitude of these quantities using complex
quantities. Wittrick [25] then extended his analysis to consider flat isotropic plates under
any general state of stress that remains uniform in the longitudinal direction (i.e.,

combinations of bi-axial direct stress and in-plane shear). A method very similar to that



described in [23] was presented by Smith in 1968 [26] for the bending, buckling, and
vibration of plate-beam structures.

In 1972, Williams [27] presented two computer programs, GASVIP and VIPAL to
compute the natural frequencies and initial buckling stress of prismatic plate assemblies
subjected to uniform longitudinal stress or uniform longitudinal compression,
respectively. GASVIP was used to set up the overall stiffness matrix for the structure,
and VIPAL demonstrated the use of substructuring. In 1974, Wittrick and Williams [28]
first reported on the VIPASA computer code for the buckling and vibration analyses of
prismatic plate assemblies. This code allowed for isotropic or anisotropic plates as well
as a general state of stress (including in-plane shear). The complex stiffnesses described
in [8] were incorporated, as well as allowances for eccentric connections between
component plates. This code also incorporated an algorithm, referred to as the Wittrick-
Williams algorithm, for determining any natural frequency or buckling load for any given
wavelength [29]. The development of this algorithm was necessary because the complex
stiffnesses described above are transcendental functions of the load factor and half
wavelength of the buckling modes of the structure. The eigenvalue problem for
determining natural frequencies and buckling load factors is therefore transcendental.
Further discussion of the Wittrick-Williams algorithm will be presented in Chapter III.

In 1973, Viswanathan and Tamekuni [30 and 31] presented an exact FSM based upon
CPT for the elastic stability analysis of composité stiffened structures subjected to biaxial
inplane loads. The structure is idealized as an assemblage of laminated plate elements
(flat or curved) and beam elements. The analysis assumes that the component plates are
orthotropic. The transverse edges are assumed to be simply supported, and any
combination of boundary conditions may be applied to the longitudinal edges. The
analysis was included in an associated computer code, BUCLAP2. Viswananthan,
Tamekuni, and Baker extended this analysis in [32] to consider long curved plates subject

to any general state of stress, including in-plane shear loads. Anisotropic material



properties were also allowed. This analysis utilized complex stiffnesses as described in
[8]. The analyses described in [26, 28, and 32] are very similar. The differences between
the three are discussed in [28].

When applied in-plane shear loads or anisotropy is present, the assumption of a
sinusoidal variation of deformation in the longitudinal direction is only exact for
structures that are infinitely long. Significant errors for structures of finite length can
occur due to the skewing of nodal lines. In 1983, Williams and Anderson [33] presented
modifications to the eigenvalue algorithm described in [29]. The modifications presented
in [33] allowed the buckling mode corresponding to a general loading to be represented
as a series of sinusoidal modes in combination with Lagrangian multipliers to apply point
constraints at any location on those edges. Each sinusoidal mode is represented by an
exact stiffness matrix. This technique allows infinitely long structures supported at
repeating intervals with anisotropy or applied in-plane shear loads to be analyzed. Thus,
a panel supported at its transverse edges is approximated by one with a series of point
supports along those edges. These modifications formed the basis for the computer code
VICON (VIpasa with CONstraints) described in [34]. However, the analysis capability
of VICON was limited to plates analyzed with CPT having a zero B matrix. The VICON
code was later modified to include structures supported by Winkler foundations [35]. An
optimum design feature was also added in 1990 [36 and 37], and the VICONOPT
(VICON with OPTimization) code was introduced.

Anderson and Kennedy [2] incorporated SDPT into VICONOPT in 1993. A
numerical approach to obtain exact plate stiffnesses that include the effects of transverse-
shear deformation was presented. The generality of VICONOPT was also expanded in
[2] to allow for the analysis of laminates with fully populated A, B, and D stiffness

matrices.



1.3 Scope of Study

The analytical formulation of the curved-plate non-linear equilibrium equations
including transverse-shear-deformation effects are presented in Chapter II. A unified set
of non-linear strains that contains terms from both physical and tensorial strain measures
is used. The equilibrium equations are derived using the principle of virtual work
following the method presented by Sanders [38 and 39]. Linearized, perturbed
equilibrium equations that describe the response of the plate just after buckling occurs are
then derived after the application of several simplifying assumptions. Modifications to
these equations that allow the reference surface of the plate to be located at a distance z,
from the centroidal surface are then made.

In Chapter III, the implementation of the new theory into the VICONOPT code is
described. A derivation of the terms of the plate stiffness matrix using MATHEMATICA
[40] is presented. The form of these terms for both CPT and SDPT is discussed. The
necessary steps to include the effects of in-plane transverse and in-plane shear loads in
the in-plane equilibrium equations are also outlined.

In Chapter IV, numerical results are presented using the newly implemented
capability. A convergence study using the current segmented-plate approach in
VICONOPT is performed for a simple example problem to obtain baseline results for use
in future comparisons. Results comparing the computational effort required by the new
analysis to that of the analysis currently in the VICONOPT program are also presented.
Comparisons of results for several example problems with different loading states are
then made. Comparisons of analyses using both physical and tensorial strain measures as
well as CPT and SDPT are made. The effects of including terms related to in-plane

transverse and in-plane shear loads in the in-plane stability equations are also examined.

10



In Chapter V, the characteristics of the newly implemented curved-plate elements in
VICONOPT is presented. A brief summary of the effects of several analytical features
that have been implemented into VICONOPT is given. Finally, potential future work in

this area is discussed.
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CHAPTER II

ANALYTICAL FORMULATION

In this chapter, the non-linear equilibrium equations are derived for a curved plate
including transverse-shear effects. A unified set of non-linear strains that contain terms
from both physical and tensorial strain measures is used. The equilibrium equations are
derived using the principle of virtual work following the method presented by Sanders
[38 and 39]. Linearized stability equations that describe the response of the plate just
after buckling occurs are then derived following the application of several simplifying
assumptions. Modifications to these equations that allow the reference surface of the

plate to be located at a distance z, from the centroidal surface are then made.

2.1 Plate Geometry, Loadings, and Sign Conventions

The geometry of the basic plate element being studied is given in Figure 2.1. This

figure depicts the orthogonal curvilinear coordinate system (§,, &,, &,) used in the present
analysis. The &, - and £,-axes shown in the figure are along lines of principal curvature

and they have radii of curvature R, and R,, respectively. The &, -axis is normal to the

middle surface of the plate. The first fundamental form of the plate middle surface is

given by
ds? = a?dt? +oldEs 2.1)

where o, and 0., are the Lamé parameters. The coordinates &, and &, are measured as arc

lengths along the & - and &,-axes, respectively. The result of measuring the coordinates in

12
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this manner is that a, = a,, = 1. The sign conventions for buckling displacements,

moments, rotations, and forces are also shown in Figure 2.1. The sign convention for the

applied in-plane loadings being considered and the relation of the reference surface of the

plate to the centroidal surface of the plate are shown in Figure 2.2. Note that that

centroidal surface can be offset from the reference surface by a distance z_.

The

centroidal surface is defined to be located at the centroid of the face of the panel that is

normal to the & -axis. The loading N,, shown in this figure is referred to in the present

thesis as an in-plane transverse loading.

2.2 Strain-Displacement Relations

The nonlinear strain-displacement relations used for the present study are given by

R, 2

2
w 1 uj B, C w
811=U1,1+_+— W, = +EU2‘1+_2- u1’1+—

2g13 =Y12 =upp tug) + W, W,n —W,

.

w
=Gl ujpugs +ugqupg +uy2 o +uy—
2

w
+H|ujouy ) +ugjuzy +upp E*+ Uy =—
1

2
. +W]
22+t

R,

u u uiu

U2 g, S, Y2

R, R; RiR;
"

Rld
.
R,

(2.2a)

(2.2b)

(2.2¢)



u
2613 =13 =Wy ———— 0, (2.2d)
R,
U
2803 =Y3 =Wip — o5~ 0 (2.2¢)
R,
du:
where the following notation for partial derivatives is used: % =uj;. The
J

displacement quantities in Egs. (2.2a) through (2.2e) are displacements of the centroidal
surface of the plate. The constants B, C, E, F, and H are set equal to one and G is set
equal to zero in Egs. (2.2a) through (2.2e) to use tensorial strain measures. The constants
B, E, and G are set equal to one and C, F, and H are set equal to zero to use physical
strain measures. Note that the linear portions of the tensorial and physical strain
measures are identical. To obtain Donnell theory from the strain-displacement relations

in Egs. (2.2a) through (2.2e) the constants B, C, E, F, G, and H must be set equal to zero,

. . .. u u
and all terms involving the quantities R—l and R—2 must be neglected. Sander’s theory
1 2

[39] may be obtained by setting the constants B, C, E, F, G, and H equal to zero and

adding the term %q;ﬁ to Egs. (2.2a) and (2.2b), where ¢, is the rotation about the normal

to the plate middle surface.
The tensorial strain measures used in the present study are those of Novozhilov [41].
These strains are obtained by taking the difference between the square of the arc length of

a line element in a body after deformation, (ds’)*, and before deformation (ds)>. The

tensorial strain measures, g, are defined by the relationship

1T/ x\2 ..
-i[(ds ) —(ds)2}=ejkd&jd&k i,j=1,3 2.3)
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The repeated indices in Eq. (2.3) indicate summation over i and j. The physical strain
measures are strains that can be measured in the laboratory. The physical strains used in
the present thesis are derived in a manner similar to that presented by Stein in [42] and
they were communicated to the author in lines of curvature coordinates by Dr. Michael P.
Nemeth'. Physical extensional strains are defined as the ratio of the change in arc length

of a line element in a body, ds’, to the original length of that line element, ds,

(ds* ) —(ds)j
€5 = ! j=1,2 (no summation) (2.4a)

J (dS)J

Physical shearing strains are defined as the change in the angles between three line

elements that are orthogonal before deformation and are oriented in the direction of three

*

unit vectors, € j» after deformation. The physical shearing strains are defined by the

following expressions

ody (2.4b)

sin(yj3)=vj3 =8j e85 j=12 (2.4¢)

The definitions for the changes in curvatures of the centroidal surface used for both

theories are

Kip ==01, (2.52)
Ky =—927 (2.5b)
K1z = (012 +92,1) (2.5¢)

! Structural Mechanics Branch, Structures Division, NASA Langley Research Center, Hampton, Virginia,
23681-0001
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These changes in curvatures are equivalent to those given by Sanders in [39] with the

terms involving rotations about the normal neglected.

2.3 Equilibrium Equations

The nonlinear equilibrium equations for the curved plate illustrated in Figures 2.1 and
2.2 are derived using the principle of virtual work [43]. This principle states that, if a
structure in equilibrium is subject to a virtual distortion while remaining in equilibrium,
then the external virtual work done by the external forces on the structure is equal to the
internal virtual work done by the internal stresses. The principle of virtual work can

therefore be written in the form

jTiSuids+ jfiﬁuidv= JGijSSijdV (2.6)
surface volume volume

The present derivation uses the principle of virtual work in the manner of Sanders [38]

written in the following form

nj10ey; +1ipn8€9y +2i1158€); + My 0Ky,
0. . . . dg,d§,
area| TM220K 27 +2M 38Ky +q Y13 + 20723
+§[N118u; + Np8uy + Q8w — My 180 - M50, HE, 2.7
[

—§[N28u; +Npy8uy + Q8w — M 280 —Mp80, W = 0

o4

The terms fi,, and m |, are effective stress measures as defined by Sanders in [38]. The

terms {; and {, are also effective stress measures as defined by Cohen in [44]. The

uppercase terms in Eq. (2.7) are applied loadings on the boundary of the plate.
Substituting Eqgs. (2.2a) through (2.2e) and Eqgs. (2.5a) through (2.5¢) into Eq. (2.7)

and integrating by parts results in
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. . np _u ), o w, La
”_(l:nll,l +njp9 + R, [Wq Rl] R, 2~ R2 RI
arca
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+C ﬁll[“l,l +E—D +E(“22“1,2),2
1)

w 3
=G| | fjpquzp +=— +[n12u2,1]1
G | ,

w ~
+H 512 Uy +— +[n12u1,2]1 8111
— s Rl ,2 .

+ﬁ12,1+“22,2+ W,z——R'; R2 1 R, "R,

B(n”u21 +F(n22[u22 +—])

w ~
=Gl njpqup +5— +[f112‘11,2]2
—_— ’ Rl ,1 ,

== Ry Bop ) s [, 8L
+Q1,1+Q2,2-[EI'+ R2)+[n“( 1 R )],

n =2 +{ By | Wy — =2
+ Ny W’2_R_2 12| W2 R, 1
2 ,
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+[hy 1y + My — @) 30, +[fg +hgns - §2]80, [d€dE;

- - w - -
+§[[N11 +0p; +§n11(u1,1 +R—]-§n12“2,1 +Hiuy, }5‘11
c 1

- ~ -~ w - w
+H Ny +10ij +Bhjjuy ‘QHIZ(UI,I +§—]+Hn12(uz,2 +7(]]5u2
] 2

+ Q1+ql+ﬁ11 W,1+ﬂ‘ +ﬁ12 W,2+u—2 ow
R R,

~[Myy +imy 80, ~[Mp + ™300, dEs

- - ~ w - w
+§| | N +1ijp +Efippu)p = Giijp| upy +—— [+ Hiijp| uyy +— | Pu;
c R2 Rl

~ . w - -
+H Ny +1np +Eﬂ22(uz.2 +R_]_Qn12ul,2 +Hn12u2,1]5‘12
2

+ Q2 +€12 +ﬁ12 W,1 +ll_1 +ﬁ22 W,2+—ul ow
R, R,

—[Myp + 15 [80) —[Mgy + 1y, ]&szd&n =0 (2.8)

For arbitrary displacements u,, u,, w, ¢,, and 9,, the coefficients of the displacements in

the area integral in Eq. (2.8) are the five equilibrium equations. The coefficients of the

displacement variables in the first line integral in Eq. (2.8) are the natural boundary

18



19

conditions for an edge &, = constant, and the coefficients of the displacement variables in

the second line integral are the natural boundary conditions for an edge &, = constant.

2.4 Stability Equations

A set of perturbation equilibrium equations that govern the stability of the plate,
referred to herein as the stability equations, may now be written by taking the difference
between the equilibrium equations evaluated for an equilibrium state just prior to
buckling and an adjacent (perturbed) equilibrium state just after buckling has occurred.

Let the prebuckling state be represented by:

fiyp ==Nyy, figp =-Npp, fijy =Ny, iy =-Myy,
My =-Mj;, My =-Mjy, §; =-Q, 4 =-Qy, (2.9)
U, Up, W

The minus signs in the loading terms reflect the sign convention used in which the
applied loads are opposite in direction to the loads that develop after buckling. Let the

perturbed state just after buckling has occurred be represented by:

11 =011 =Ny, figp =ngp —Nopp, A3 =njp =Ny,

j= 1]

11 =mq =My, My =myy —Myy, My =myy; ~Mj3, (2.10)
41 =91 -Q1, G2 =92 -Qz, u; +Up, up +Uy, w+W

=1

where the lower case variables are perturbation variables. Taking the difference between
the two equilibrium states represented by Eqgs. (2.9) and (2.10), linearizing the resulting
equations for the perturbation variables, and applying the following simplifying

assumptions:



1)  Prebuckling deformations, moments, and transverse-shear stresses are

negligible

2)  The in-plane prebuckling stress state is uniform

yields the following stability equations:

q; Ny u; ] Njp uy
ooz R0 - R 2
1 1 1 1

W,1 W,9
"(_:Nll[_R +U1,11)-E.N22111,22 +§N12(——R2 +uyqg +U2,22J
1

—P_INu[—w’z +2u112)=0
R, ’

qy N u; | Ny up
Ny +n 4 R Wy = |- —= | W, ——
1214022 TR, ( 2 ) ( 1 Rl]

W,2 W’l
=BNjjup ;- Esz(—R + Uz,zz]'* Qle(—R +upg + l11,:22)
2 1

W,1
—Hle(gﬁ“ 2“2,12] =0

myy;+mypp—q; =0

myp|+my,—-qp =0

(2.11a)

(2.11b)

(2.11¢)

(2.114d)
(2.11e)

20



The boundary conditions for an edge £, = constant are

6111 =0
or (2.12a)

W
ny __CNll(ul,l +R—]+§N12u2,1 —HNjou; 5, =0
1

802 =0
or (2.12b)

w w
nj; —BNjjug ; +GNy, Ut —HNjzlup, *Ro =0

1 2
ow=0
or (2.12¢)
qp —Nn(w’ﬁ—]—le(W,z +—)=0
1 2

B(bl =0 or my =0 (212d)
&, =0 or mp, =0 (2.12¢)

As will be discussed in Chapter III, a sinusoidal variation of displacements and forces is

assumed in the &, direction. Therefore, these boundary conditions are ignored herein.

The boundary conditions for an edge &, = constant are

8!11 =0
or (2.13a)
A~ w w
njp; =njp —ENpujz +GNyp | up) +§— —HNjp|uy +R_ =0
2 1
8\12 =0
or (2.13b)

R w
Ny =Ny -Esz[uz,z +R—]+§N1201,2 —HNjpup; =0
2



ow=0
or (2.13¢)
~ uy uj

=qy—N s 1y+— |—-N m+—=1=0
942 =92 IZ(WI Rl) 2?.(W 2 RZJ
30, =0 or my, =0 (2.13d)
o, =0 or my, =0 (2.13e)

where the terms with a caret (*) are effective force quantities per unit length at an edge

E, = constant. The effective forces, fi|,fi;5, and g, are equal to forces in the original
(undeformed) -, £,-, and &,-directions along the longitudinal edges of the plate

(§,=constant). Introduction of these force quantities facilitates the derivation of the

stiffness matrix in Chapter III which relates the forces along the longitudinal edges of the
plate in the original coordinate directions to the corresponding displacements along those
edges.

The first three stability equations given in Egs. (2.11a) through (2.11c) are now
written in a simplified form using the definitions of the effective forces per unit length

given in Eqgs. (2.13a) through (2.13c)

. q; Nyjp u; | Njp uy
nppp+tipy+—————| W, —— [ —=| Wy ==

R R R R R
1 1 1 1 2 (2.14)
w,
—QNM(EILJrUl,u)JfQleUz,n —HNjpuy 3 =0
N q N u N12 Uy
Nz +0222 +R—2——22- W,z‘—z -5 | Y1T5
2 Rp Ry) Ry Ry
(2.14b)

W,] W,l
—BNjjup g +QN12(E_+ 01,11)-@12(R—+U2,12)= 0
1 2
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This form of these stability equations will be used herein. Note that Eq. (2.14b) contains
the perturbation variables n, and q,. These variables are related to the effective forces,

fijp and §,, through Egs. (2.13a) and (2.13c).

2.5 Stability Equations Transformed to the Plate Reference Surface

The stability equations given in Eqgs. (2.11a) through (2.11e) describe the response at
the centroidal surface of the plate. A superscript ° may be added to the displacement
quantities in these equations to indicate that they are centroidal quantities. These
equations are now written such that they describe the response at the reference surface of
the plate, which can be located a distance z_ from the centroidal surface, Figure 2.2. To

write the stability equations at the reference surface, the following information is used:

1) The relations of the displacements at the centroidal surface, uy and u3, to the

displacements at the reference surface, u, and u, are:

ul =u; -z.0 (2.15a)

ud =uy—z.0; (2.15b)

2) The relations of the moments at the centroidal surface, m7;, mJ,, and mfz, to

the displacements at the reference surface, m;, mjy;, and m,, are:
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mfl =my —Z:.0q4 (2150)
mgz =mMjy —Z.N9y) (215d)
mp, =mjp —Z.Npy (2.15€)

3) The following quantities do not vary with z:

N1, No2, Nyp, nyp, npp, ny2, qp, q2, and w

4) The applied in-plane stresses, N, N,,, and N, act at the centroidal surface.

Substitution of Egs. (2.15a) through (2.15¢) into Eqgs. (2.14a) through (2.14c) and Eqgs.

(2.11d) and (2.11e) yields the following equations

R q N uy-z:.0;| N uy —z.0
Ny 02 +R—1— R“(w’l— l R |- R12 W,z__ch_Z
1 1 1 1 2

w
“QNll(i—lﬂll,l —Zc¢1J +GNjs[uy —zc¢2]’“ (2.16a)
1

~HNpa[u —zc41];, =0

f N u -2 N uy -z
Nyz1 +N22 +;—2——R—21(w,2— 2 = °¢2]_ R12 (Wq— 1 _ c¢l)
W,1
-BNj(u; —Zc¢2),“ + §N12(—§—+[u1 _ch)l]'“J (2.16b)
1

W,
—Hle(EzL*'[Uz - Zc¢2]12)=0
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Rl Rz Rl
us —ZC¢2 QN” w 2.16
—Njz| w,p — + —+[uy -z (2.16¢)
12{ 2 R, ) R, (R, [ug c¢1],1J
1 .
+GN12[112 —ze02];  HNpfuy-zety],
Rl Rl B
myy;+myp o _Zc(nll,l +Np3.2 )—Ch =0 (2.16d)
myp 1 +mpp ) ~Z¢ (n12,1 +n22,2)"£12 =0 (2.16¢)

The natural boundary conditions are also rewritten after substitution of Eqs. (2.15a)

through (2.15e) into Egs. (2.13a) through (2.13e). For an edge &, = constant, the natural
boundary conditions become

fiig =njp ~ENpfu; —2.0,], +_G_N12([u2 —2:02], +l:'_2)

(2.17a)
__HNIZ([UI =~ Zc0 ],1 + Rllj =0

iy =np —Esz([uz _Zc¢2],2 +I:V—2)+QN12[U1 -Zc¢1]’2

“_HNIZ[UZ - Zc¢2],1 =0

(2.17b)

Uy —2 Uy —Z
@2=<12—le(W1+LL—C—?d)—N22[W2+[2—EM]=O (2.17¢)
» Rl s Rz



miy —Z.Njo =0 (217d)

myy —2zcnpy =0 (2.17e)

The last two stability equations, Egs. (2.16d) and (2.16e), are now rewritten by
substituting expressions for the quantities (n”,l + 1112,2) and (n12,1 + n22,2) that can

be obtained using Egs. (2.16a) and (2.16b), respectively, and the definitions for the
effective forces per unit length, Egs. (2.17a) through (2.17c). The definitions for the
effective forces are needed since the terms n,, and n,, that appear in the two above are the
perturbation values, not the effective forces. Substitution of the expressions for the two
quantities above into Eqs. (2.16d) and (2.16e), respectively, yields the final form of the

last two stability equations

q; Ny Uy —~Z:.0
myy +myp2 —qy +Zc[—‘— W —————

Ry Ry Ry
N 112 Ll A ¢2 w
——é‘;(w’,z-R—c]—QNu(E—'Wl,l—Zc¢1)
! 2 ‘ 1 (2.18a)
W,y
—ENg(uj —2zc1) 5, +GNyp R—+[u2 ~zc02] ),
2
W,2
+[U2 —ZC¢2],22)—I'_IN]2 —E'FZ[UI —Zc¢1]’12 =0
q2 Ny up —2:0)
mjp; +m —qp +z |- —=| W,y ———=
12,1 222 —~q2 C[Rz R, [ 2 R, )
N up —z:0
_R_(w’l_—R_c—— ~BNji(uz ~2z¢42) |,
2 1 (2.18b)

—Esz(% +[up - Zc¢2],22)+ Qle[vl:—’ll +ug —zetdi ],

+[u1 -Z.0) ],22)—.1;11\]12(::—’21 + 2[“2 - Zc¢2],12)}= 0
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The stability equations in the form given in Egs. (2.16a) through (2.16c) and Eqgs. (2.18a)
and (2.18b) are those implemented into the VICONOPT code.

2.6 Constitutive Relations

The present analysis allows for generally laminated composite materials. The
geometry of a general, curved laminate is given in Figure 2.3. As shown in the figure,

the number of layers in the laminate is n,, and the width of the laminate is b. The radius

of curvature of the &,-axis, R, is shown in the figure as well. . The radius of curvature of
the ﬁ,-axis, R, is not shown; however, its direction may be inferred from that of R,. The
lamina coordinate system is the (&,., £,., ;) system and the laminate coordinate system is

the (§,, &,, ;) system. The lamina coordinate system is aligned with the principal

material direction of the lamina, and the laminate coordinate system is aligned with the

principal geometric directions of the laminate. The coordinate system for the kth lamina

is oriented at an angle 6, with respect to the laminate coordinate system. The stress-strain

relations in the lamina coordinate system for a lamina of orthotropic material in a state of

plane stress are

o, Qu Q2 0 |jg, :
022' = Q12 Q22 0 822‘ (2.19)
T 0 0 Qe6]|7,y

where the [Q] matrix is referred to as the reduced stiffness matrix for the lamina and is
defined in [45] in terms of the elastic engineering constants of the lamina. These
relations may be written in the laminate coordinate system by use of transformation

matrices as defined in [45]. The transformed relations are
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C11 §11 §12 §16 €11
62 =|Q12 Qxn Q [{t22 (2.20)
T12 Q6 Q26 Qs |1Y12

where the [-Q] matrix is the reduced transformed stiffness matrix for the lamina. Both of

Eqgs. (2.19) and (2.20) may be thought of as stress-strain relations for the kth lamina in a

multi-layer laminate. Therefore, Eq. (2.20) may be written as

{o} =[Q] {e}y 2.21)

The constitutive relations for a thin, elastic laminated composite shell may now be

defined as

(Ny;] [Ann A A | By Bz Bie |{&11)
Na»p Ay Ay Ay [Bip By By (€
< N2 [ _ Alg Ags Ags | Bis B2s Bes {le > 2.22)
My B;; By Byg |Dii D12 Dig || X
My, B, By By [Dy2 Dy Do ||K22
(M2 ) | Bie B2 Bes | Dis D2 Des f| K12 )

where the resultant forces and moments acting on the laminate, {N} and {M},

respectively, are defined as

Nul o 4 |Cu
Ny t=Y G4y HdE (2.23)
Nip) 1|1
M|, 4 [On
My =3 | {022 &3 d&3 (2.24)
My ) ' ety
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where n, is the total number of layers in the laminate. The extensional, coupling, and

bending stiffness matrices, A, B, and D, respectively, are defined as

(A, B, D)=§2’1 T @l & 83) ez (2.25)
=1z

The analysis in VICONOPT allows for laminates with fully populated A, B, and D
matrices.

The constitutive relations for transverse shear used in VICONOPT are those
presented by Cohen in [44]. The constitutive relations for transverse shear are written in

inverted form as

{Y13}=[k11 k12]{ql} 2.26)
Y23) Lkiz ko2 jlaz

where [K] is a symmetric 2-by-2 transverse shear compliance matrix whose terms are
defined in [44]. The terms of the [k] matrix were derived for general, anisotropic, multi-
layered composite shells and they are a generalization of results fbr a shell with a
homogeneous wall for which the transverse shear correction factor for the shear stiffness
is 5/6. The procedure used in [44] for obtaining the terms of the [k] matrix follows.
Statically correct expressions of in-plane stresses and transverse-shear stresses were
derived in terms of the transverse-shear stress resultants and arbitrary constants that were
interpreted by Cohen as redundant “forces”. The expressions for in-plane stresses were

obtained using the constitutive relations given in Eq. (2.22) and linear distribution of in-

plane strains through the wall thickness. The expressions of transverse-shear stresses

were obtained by integrating in the &,-direction the three-dimensional equilibrium

equations. The transverse-shear stress resultants were then used to derive an expression
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of the volumetric density of the transverse-shear strain energy. A statically correct

expression of the area density of the transverse-shear strain energy was then obtained by
integrating in the &,-direction this volumetric density. The transverse-shear constitutive
relations given in Eq. (2.26) were then derived by applying Castigliano’s theorem of least

work [46] by minimizing the area density of the transverse-shear strain energy with

respect to the redundant forces mentioned previously.
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CHAPTER II1

IMPLEMENTATION INTO VICONOPT

In this chapter, the implementation of the present theory into the VICONOPT code is

described. Additional simplifications made to the theory are described first. A

discussion of the use of the transverse-shear strain, Y,,, as a fundamental displacement

variable in the problem to maintain continuity of rotations at plate junctions is then
presented. The derivation of an expression for the curved-plate stiffness matrix is
described. The terms of matrices that are needed to calculate this stiffness matrix were
obtained using MATHEMATICA [40], and they are presented in Appendix A. The terms
for both CPT and SDPT are presented, and the terms that result from the inclusion of
direct in-plane transverse and in-plane shear loads in the in-plane stability equations are
specified. As stated previously, the implementation of the curved-plate theory into
VICONOPT follows very closely the method presented in Reference {2]. Therefore, the

following discussion is necessarily similar to that presented in that reference.

3.1 Simplifications to the Theory

Before proceeding with the derivation of the curved-plate stiffness matrix, a
discussion of several simplifications to be implemented is presented. First, the theory
implemented into the VICONOPT code considers structures that are prismatic in the
longitudinal direction. Therefore, for the curved plates being considered in the present

thesis, the radius of curvature in the longitudinal direction, R,, is infinite; and any terms

. . , 1
involving the quantity R, are zero. Although these terms are set equal to zero for the
1

calculation of the terms of the stiffness matrix, they are retained for completeness in the
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theory presented in this chapter. Another simplification to the theory involves limiting
the capability to locate the reference surface a distance z, from the centroidal surface.
This capability has only been implemented for the case where the effects of N,, and N,
loads in the in-plane stability equations are neglected. The expressions for the stiffness
terms that result when N,, and N,, are included in the in-plane stability equations and z,
is non-zero are prohibitively long. Therefore, in the derivation to follow, only the
following two cases are presented:

1) N,, and N, are included in the in-plane stability equations and z_ is zero (i.e.,
reference surface is coincident with the centroidal surface); and ,

2) N,, and N, are neglected in the in-plane stability equations and z_ is non-zero

(i.e., reference surface may be translated from the centroidal surface).

3.2 Continuity of Rotations at a Plate Junction

One important issue to be addressed in the analysis of plate assemblies is the
continuity of rotations at a plate junction. The original VIPASA code is based upon CPT,
and the theory only treats four degrees of freedom (DOF) at a longitudinal plate edge.

These DOF are the three displacement quantities, u,, u,, and w, and a rotation about the
§,-axis, ¢,. Maintaining continuity of these DOF at a typical plate junction is very

straightforward. However, when SDPT is considered, there are five DOF at a

longitudinal plate edge. These DOF are the four from CPT as well as an additional
rotation, ¢,, that results from the inclusion of transverse-shear deformation. Another
problem that must be addressed is that when two plates are joined together such that one
is rotated at an arbitrary angle, 0, to the other, rotations about the normals to the
centroidal surfaces of the two plates must be included to satisfy continuity of rotations.

This rotation, ¢, is not accounted for in the present plate theory. The procedure used in
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VICONOPT to maintain continuity of rotations follows that used by Cohen in [47]. This

procedure introduces the shear strain, ¥,,, as a fundamental displacement variable instead

of the rotation, ¢,. The justification for using this approach is described subsequently.

The displacements and rotations at a typical plate junction are shown in Figure 3.1.
The two plates, numbered 1 and 2, are shown viewed along the 1-axis, and it is obvious

that the u, displacements are easily matched regardless of the orientation of plate 2. The

displacements and rotations for which continuity must be maintained are u,, w, ¢,, and ¢,.

Upon inspection of Figure 3.1(a), the following expressions for coplanar plates (8 = 0)

may be written as

uj =u? (3.1a)
wl =w? (3.1b)
o} =07 (3.1c)
on =07 (3.1d)

where the superscripts 1 and 2 refer to the plate numbers. Similarly, upon inspection of

Figure 3.1(b), the following expressions for 8 = +90° may be written as

ul2 = w? (3.2a)
w! =—u2 (3.2b)
0 =-07 (3.2¢)

(3.2d)
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Finally, upon inspection of Figure 3.1(c), the following expressions for arbitrary 6 may

be written as

ul2 =u§ cosO+w? sin@ (3.3a3)
w! =w2cos - u%sinO (3.3b)
o} =02 cos8-¢3sin® (3.3¢)
oL =02 cos8+07 sind (3.3d)

The rotation about the normal of a line element originally directed along the &, -axis is

shown in [48] to be

8u2
On =2 (34)
3
Using this definition, Eqs. (3.3¢) and (3.3d) are written as
o0} = 07 cos8—u3,sin@ (3.52)
ul _ .2 2 .
21 =ujjcosO+0¢isind (3.5b)

Using Eqgs. (3.3a) and (3.3b) and the definition for ¥y,,, Eq. (2.2d), the previous two

equations may be written as

7}3 = cos9 7123 (3.6a)

0=-sind v, (3.6b)
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The results shown in Egs. (3.6a) and (3.6b) indicate that for plates that are not
coplanar (i.e., one plate oriented at an arbitrary angle, 6, to the other), the shear strain, 7,,,
must be set equal to zero for each plate to maintain continuity of rotations. Therefore, if

Y., is made a fundamental displacement quantity instead of ¢,, the shear strain can be set

equal to zero by simply striking out the appropriate rows and columns in the overall
stiffness matrix. Performing this operation reduces the stiffness matrix to the same size

as that for CPT. The VICONOPT code utilizes this procedure for plates that are not

coplanar. For plates that are coplanar, i.e., 6 = O, the shear strain in plate 1 is equal to

that in plate 2. The VICONOPT code handles this situation by creating a substructure
using the two plates with all DOF present and eliminating the extra DOF before assembly

into the final stiffness matrix.

The use of the shear strain, Y,,, as a fundamental displacement quantity requires that
the effective transverse-shear force per unit length, §,, be modified. The modified
expression for q, is obtained from the natural boundary conditions for an edge
&,=constant, that are derived from the virtual work expression, Eq. (2.8), when v, is used

as a fundamental displacement variable. The modified expression is obtained by

replacing ¢, with the expression w,; —%— Y13 in the boundary integral over &, in Eq.
1

(2.8). Performing this substitution, integrating by parts, and following the procedure

outlined in Section 2.6 yields the following modified definition for q,:

[ul _Zc¢1] [u2 _Zc¢2]
TR, = Noy| W,y TR,

42 =qz ‘NIZ(W’I - )+[m12 ~zenpp ], 37
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The definition for 4, given in Eq. (3.7) replaces that given in Eq. (2.17c). Note that the

term m,,, which appears in the Kirchhoff shear term of CPT is also present for the case

of SDPT when 7,,, is used as a fundamental displacement quantity.

3.3 Derivation of the Curved-Plate Stiffness Matrix

Throughout this section, reference is made to force quantities. Although these
quantities are forces and moments per unit length, they are designated forces herein for
convenience. The first step in implementing the present theory into VICONOPT is to

derive a stiffness matrix that relates the force quantities along the two longitudinal edges,

L0
2

&2

, to the displacements along those edges. The desired force and displacement

quantities are in the direction of the original (undeformed) coordinates. The

displacement variables are

d=¢{ w ; (38)
o,
\i YI3,

where the shear strain, 7,,, has been introduced as a fundamental displacement quantity

instead of the rotation, ¢,. The force variables that correspond to the displacement

variables given in Eq. (3.8) are

f=: éiz > (39)
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Note that the effective forces at the boundaries, defined by Egs. (2.17a) and (2.17b) and
Eq. (3.7), are being used as the force quantities since, as discussed in Chapter II, they are
equal to the forces in the direction of the original (undeformed) coordinates.

The problem may now be reduced to ordinary differential equations in y by assuming
that the response of the plate in the longitudinal &,-direction varies sinusoidally.

Therefore, if the displacements and forces in the plate are now considered to be functions

of &,, the variables of Egs. (3.8) and (3.9) may be written as

Z(§1,§2)=exp(i T &1 )Z(&z) (310)

=

and A is the half-wavelength of the response in the & -direction. Since a sinusoidal

where

variation in the & -direction is assumed, the vector z will involve the amplitudes of the

displacement and force quantities. The imaginary number, i, has been used in Egs. (3.8)
and (3.9) to account for the spatial phase shift that occurs between the perturbation forces
and displacements which occur at the edges of the plates during buckling for orthotropic
plates without shear loading and to result in real plate stiffnesses when using the
exponential expression of Eq. (3.10).

The next step in the derivation is to express all unknowns in terms of z. A partially
inverted form of the constitutive relations, Eq. (2.22), is used to express the required
quantities as functions of the fundamental variables in d and f or terms that may be

derived from the fundamental variables. The partially inverted constitutive relations are
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(o) [ by hip hyz | hyy hys hyg ][ &g
€22 —hip hypy  hpz3 | hyy hps hyg|fngp
JEi2 | _ —hy3 hy3  hzz | hyy h3s hyg [ |
my hj4 —hos —has | hay hys hye || xyy
K2 —hys  hps  hzs |—hgs hss hsg |imy
(X12) L|-his ha hizg [—hge hss hge |(my7 )

(3.11)
{QI }= [ h77  hog HYl }
Y2) [-h7g hgg (a2
where the linear portion of €, from Eq. (2.2a) is used

€11 =uy + hd
11 1,1 Rl

The variables k,, and ¢, were defined in Section 2.2 of Chapter II. The constants h; in

the first portion of Eq. (3.11) are calculated from the A, B, and D matrices defined in Eq.
(2.25). The constants h,,, h,, and hy, are shear stiffness terms and are calculated using
the theory presented in [44].

Another requirement of the present derivation is to express the relationship between

q, and G, without any &,-derivatives. This expression is

R up -zc9
92 +N12[W,1 “[I—IE—IJJ+N22(¢2 —hgy)+[myp —zenpp ]|

qz = (3.12)
1-Nyhgg

As with the stability equations, only the linear portion of the strain-displacement

relations are considered in the present derivation
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Y12 =uj2 tuy) (3.13a)
€ =U32 +Rl (3.13b)
2
u
Y23 = W,3 -ﬁi—‘bz (3.13¢)
2
K2 ==037 (3.13d)
Kp = _(¢1.2 +¢2,1) (3.13¢)

The expression for K;, can be re-written after substituting expressions obtained for ¢, and

¢, from Egs. (2.5a) and (2.5b) and using the linear portion of €,

1 1 €12
Kjg =— +| —+— |uy +2 +—+ 3.13
12 [Yz (Rl R, ) 2 ¢2]‘1 R, Y12 (3.13)
Using Egs. (3.11) and (3.12), the strain displacement equations, Eqgs. (3.13a) through
(3.13d) and (3.13f) and the equations, Egs. (2.16a) through (2.16¢) and (2.18a) and

(2.18b) are written in terms of the elements of z as

Tz =Pz or z'=T'Pz (3.14)

where a prime denotes differentiation with respect to &,. The square matrix T appears in

the present study as a result of the inclusion of the effects of N,, and N, in the in-plane
equilibrium equations. This matrix was shown to be the identity matrix when these terms
were neglected in [2]. The presence of off-diagonal terms in this matrix is a fundamental

difference between the present theory and that presented in [2].
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The elements of z are now assumed to be given by
ips
zj=cj exp(Tz) (3.15)

where B is a characteristic root of the differential equation. The number of values of B is

equal to the order of the differential equation system. Substitution of Eq. (3.15) into Eq.

(3.14) results in the following equation

R-BDc=0 (3.16a)
where
R=bTlp (3.16b)

and I is the identity matrix. The vector ¢ consists of the c; of Eq. (3.15). The matrix R is
obtained by premultiplying P by T". The eigenvalues of the matrix R are the
characteristic roots of the differential equation. This matrix is not symmetric; however, it
can be made real by multiplication or division of appropriate rows and columns by the
imaginary number, i. The elements of the matrices T and P are given in Appendix A for
both SDPT and CPT.

For each eigenvalue of R, there exists an eigenvector, ¢. A matrix C may be defined
with columns as the eigenvectors, ¢, the upper half of each column, denoted a, will be
associated with displacements, and the lower half, denoted b, will be associated with
forces. The form of C is therefore

Cz[al a; . . . aj] 317

by by . . . b;

The next step in the derivation is to write the amplitudes of the displacements and forces

b . o .
at the two edges of the plate. Quantities evaluated at &, = ~5 are identified with a
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superscript 1 and quantities evaluated at §, = +5 are identified with a superscript 2 as

follows:
= % a1y exp[_izﬁk ] (3.182)
d? = kglajkrk cxp[i Sk ) (3.18b)
f] = kZi‘,lbjkrk exp(_izﬁk ) (3.18¢)
z kark exp( Bk) (3.18d)

where the r, are constants determined from the edge values and N is the order of the

differential equation. Equations (3.18a)-(3.18d) may be written in matrix form as

1
{:2}=Er (3.19)

fl
{fz } =Fr (3.20)

Eliminating r from Egs. (3.19) and (3.20) yields

£l d!
{fz}ﬂ({dz} (3.21)

where K is the stiffness matrix given by
K=FE' (3.22)
As for the case of CPT, K is real and symmetric for orthotropic plates without in-

plane shear loading, and it is Hermitian otherwise. Reference [2] presents a discussion of
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techniques used to ensure that accurate numerical results for K are obtained from Eq.

(3.22).

3.4 The Wittrick-Williams Eigenvalue Algorithm

A brief discussion of the analysis procedure used in VICONOPT is in order. As
previously mentioned, VICONOPT uses a specialized algorithm for determining any
natural frequency or buckling load for any given wavelength [29]. The development of
this algorithm was necessary because the complex stiffnesses defined in the previous
section are transcendental functions of the load factor and half wavelength of the
buckling modes of the structure. The eigenvalue problem for determining natural
frequencies and buckling load factors is therefore transcendental.

The iterative analysis procedure used in VICONOPT is described in [36]. For this
procedure, the plate stiffnesses for a given wavelength are evaluated at a series of trial
values of the eigenvalue being determined until convergence is attained. This eigenvalue
is either the load factor for buckling or the natural frequency for vibration, and it is
different than the eigenvalues of the R matrix of Eq. (3.16b). Unless otherwise specified
by the user, the default initial trial value used in the VICONOPT code is one. For each
trial value of the eigenvalue considered, the analysis requires the plate stiffnesses as well
as the number of eigenvalues that lie below the trial value for the entire plate assembly
assuming the longitudinal edges of each individual to be clamped. A complete
description of the eigenvalue algorithm is given in [28]. Determining the number of
eigenvalues exceeded by a plate with clamped edges is very difficult except for very
specialized cases. Therefore, the procedure developed in [28] is used. This procedure
subdivides each plate into sub-elements with a small enough width such that none of the
eigenvalues of the sub-elements with clamped edges lie below the trial value. A sub-
elements is then used as a substructure and is repeatedly doubled until the original plate

element is obtained. Using a simple procedure at each doubling step [29], the number of
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eigenvalues that lie below the trial value for the complete plate is returned. This
procedure is repeated for each plate in the assembly. Using this information and other
information obtained from the stiffness matrix of the entire assembly, the total number of
eigenvalues for the entire plate assembly that lie below the trial value is obtained. An
iterative procedure is then used to refine the trial value until the desired eigenvalue is
calculated to within the accuracy required.

One important piece of information required for the analysis procedure described
herein is the number of subdivisions required for each plate. As seen in Appendix A, all
of the terms of the R matrix are proportional to the plate width, b. Therefore, all of the

eigenvalues of R are proportional to b. Furthermore, it is important to note that an
eigenvalue equal to ® corresponds to buckling or vibration with simply supported

longitudinal edges. By successively halving the value for b until all the real eigenvalues
of R are less than &, a value for the width of the sub-elements for which no eigenvalues
lie below the eigenvalue for simply supported edges is determined. This width also

guarantees that no eigenvalues for the sub-elements lie below the eigenvalue for clamped

edges. This width is that used in the iterative analysis procedure described previously.
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CHAPTER IV

NUMERICAL RESULTS

In this chapter, numerical results are presented using the newly implemented curved-
plate analysis capability in VICONOPT. Results from several example problems are
presented to verify the results obtained with this new capability. A convergence study
using the segmented-plate approach in VICONOPT is performed for an isotropic
cylindrical shell subjected to uniaxial compression to identify a suitable number of
segments to be used when comparing results. Results comparing the computational effort
required by the new analysis to that of the analysis currently in the VICONOPT program
are also presented for this example. Comparisons of results for several curved plates
analyzed in Ref. [32] are then made. The effects of including terms related to in-plane
transverse loads in the in-plane stability equations are examined using a long cylindrical
tube subjected to in-plane transverse loading. Finally, the curved-plate analysis is used to
conduct a design-optimization study of a honeycomb-sandwich cylindrical shell
subjected to uniaxial compression. Comparisons of analyses using both physical and
tensorial strain measures are made for selected examples, and, where appropriate, results

using CPT and SDPT are compared.

4.1 Convergence of the Segmented-Plate Approach

The convergence of results using the segmented-plate approach in VICONOPT is
examined for the case of an aluminum cylindrical shell subjected to uniaxial

compression, see Figure 4.1. The values of the material properties used for this example

are E = 10.0 x 10° psi and v,, = 0.33. The wall thickness, t, is 0.1 in., and the radius, R, is

60 in. As shown in Reference [49], the critical value for the stress resultant, Ny cr? for

the axisymmetric buckling of a long isotropic cylindrical shell is



=1019.354 1b/in. 4.1)

For v,, = 0.33, the critical half wavelength, A

cr?

for axisymmetric buckling is shown in

[49] to be

2.2
Aer =T 4 Rat )=1.74,/R2t=4.255 in. (4.2)

12(1- v},
Results illustrating the convergence of the VICONOPT segmented-plate results for

Njj as a function of the number of segments used to approximate the cylinder are

shown in Figure 4.2. In this figure, the results of the segmented-plate analysis are shown
as the solid curve. The theoretical value obtained from Reference [49] is shown as the
dashed horizontal line. The value obtained using the present curved-plate analysis with

two curved-plate elements is shown as the open symbol. All results in this figure are

calculated for the value of A given in Eq. (4.2). The VICONOPT results presented in

this figure are obtained using CPT with tensorial strain measures. As shown in Figure
4.2, the segmented-plate results converge to the theoretical value when 120 segments are
used. Therefore, to ensure that converged results are obtained when the segmented-plate
approach is used to analyze the remaining example problems, sixty segments will be used
when analyzing curved plates with an included angle of 180 degrees or less, and 120
segments will be used when analyzing full cylinders.

This example problem is also used to study the computational requirements of the
new curved-plate analysis in relation to the segmented-plate approach. A plot of
normalized CPU time as a function of the number of plate segments used in the
approximation is shown in Figure 4.3 for the segmented-plate analysis using either CPT

or SDPT. The normalized CPU time shown in this figure is the CPU time required for
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the segmented-plate analyses normalized with respect to the CPU time required for the
curved-plate analysis using two curved-plate elements. The horizontal dashed line is at a
normalized CPU time of 1.0, and it represents the curved-plate analysis results. As
shown in the figure, to achieve convergence with 120 flat-plate segments requires
approximately 3.5 times and 16.7 times as much CPU time as the curved-plate analysis
for CPT and SDPT, respectively. (For the analysis using SDPT, G,, = G;; = G,;). One
consideration to note at this time is that the segmented-plate analysis in VICONOPT is

implemented to handle the general case of variable geometry, stiffness and loading in the

E,-direction. This approach is therefore not as computationally efficient as it could be for

the case of constant curvature, stiffness, and loading in that direction (as is the case for
the curved-plate analysis). One approach to determining the additional computational
efficiency that may be obtained with the segmented-plate analysis involves defining a
single, small flat plate that is repeatedly doubled using the substructuring capability in
VICONOPT until the curved-plate segment is obtained. This technique is referred to
herein as ‘doubling’. Results relating the computational effort of this approach to the
curved-plate analysis indicate that further reduction in the computational effort required
for the segmented-plate analysis can be obtained using this technique. This result occurs
because the in-plane and out-plane equations are uncoupled in the segmented-plate
analysis, and analytical expressions for the plate stiffnesses can be used. However, this
approach is currently not automated in the VICONOPT code, and a separate ‘doubling’
effort would have to be made for every curved-plate segment in any given analytical

model.

4.2 Buckling of Curved Plates With Widely Varying Curvatures

The example problems presented in the next two sections are taken from Ref. [32],
and they are used to verify the results obtained using the new curved-plate analysis in

VICONOPT. The positive sense of the applied in-plane loadings to be considered in all
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of the following examples is given in Figure 4.4. The first example problem considered
studies the buckling of a symmetrically laminated curved plate with clamped longitudinal
edges as a function of the curvature of the plate. The geometry of the plate is shown in
Figure 4.5. As shown in the figure, the plate is constructed from symmetrically
laminated boron/epoxy plies with a [0/90/+45]_ layup. To allow for direct comparison of
results with those presented in [32], the SI units are used for this example and the
example in the following section. The material properties for a boron/epoxy ply are
given in Table 1.

The following loadings are considered for this example problem: N,, only, N,, only,
N,, only, and combined N,, = N,, = N,,. The buckling of this plate subject to these four

different loadings was investigated while varying the value of the curvature parameter,

2

e from 1 to 1000. The values of b, R,, and f used for these analyses are summarized
2

in Table 2. Both physical and tensorial strains are used with the new curved-plate
analysis, while physical strains only are used for the segmented-plate analysis. The
analysis of [32] uses physical strains. All analysis results presented in this section are for
CPT. The terms involving N,, and N,, are included in the in-plane stability equations for
all analyses. The results of this study are presented in Table 3 for N, loading, in Table 4
for N,, loading, in Table 5 for N,, loading, and in Table 6 for combined N;;, = N,, =N,

loading. The critical values of the stress resultants presented in these tables were
: A . A
calculated using for the values of ™ given in the tables. These values of 5 were

presented in Reference [32]. The critical values of these stress resultants are also plotted
as a function of the curvature parameter in Figure 4.6 through Figure 4.9, respectively.
As shown in these tables, the present analysis compares very well with that presented in

{32] and with the segmented-plate analysis for widely varying values of the curvature
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parameter. As shown in Tables 3-6, there is no appreciable difference in the results

obtained using physical and tensorial strains.

4.3 Buckling of an Unsymmetrically Laminated Curved Plate

This example problem includes the effect of bending-stretching coupling and shear-
extension coupling on the buckling of an unsymmetrically laminated curved plate with
simply supported longitudinal edges. The geometry of the curved plate is shown in
Figure 4.10. As shown in the figure, the laminate being studied consists of a 0.0508-cm.-
thick layer of 2024 aluminum that is reinforced on the inner surface with pairs of +45°
boron/epoxy plies. The material properties for 2024 aluminum are given in Table 1. For
this example, the number of pairs of +45° boron/epoxy plies is increased from one to
seven. The analyses used for this example are identical to those used for the previous
example. The critical values for buckling of the stress resultants N;, and N,, are
presented in Tables 7 and 8, respectively. These values are also plotted as a function of
the number of boron/epoxy plies used in the laminate in Figure 4.11 and Figure 4.12,
respectively. The agreement between all the analyses is very good. As with the previous
example, there is no appreciable difference in the results obtained using physical and
tensorial strains. Results were also computed using SDPT. However, for the case of
seven pairs of pairs of +45° boron/epoxy plies, the R/t ratio is still approximately 300,
and the effects of transverse-shear deformation afe minimal. Therefore, as expected, the
critical values for buckling of the stress resultants N, and N,, were slightly less than
those for CPT, but the differences were less than 0.2 percent. With regards to the CPU
time requirements for this example, the segmented-plate analysis using SDPT required
approximately 35 times as much CPU time as the curved-plate analysis for the case of 14
boron/epoxy plies. Furthermore, the results obtained using the ‘doubling’ approach
described in Section 4.1 indicate that the computational efficiencies offered by that

approach were not realized for this example problem. This result occurs because the
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coupling that occurs due.to the unsymmetric laminate prevents the in-plane and out-of-
plane equations from being uncoupled, and the same numerical approach for calculating

the plate stiffnesses as that used for the curved-plate analysis must be used.

4.4 Effect of N,, Terms in the In-Plane Stability Equations

As stated previously, the original segmented-plate analysis in the VICONOPT code
neglects the effects of the terms involving N,, and N, in the in-plane stability equations.
This example problem illustrates the effect these terms may have on the buckling of an
isotropic (aluminum) long cylindrical tube subjected to uniform external pressure. The
material properties in English units for aluminum are given in Table 9. The geometry of
this example problem is shown in Figure 4.13. As shown in the figure, only half of the
tube is modeled since the buckling mode being studied is symmetric (i.e., two full waves
in the circumferential direction). The pressure load is modeled as an applied N,, hoop
loading. The value of the external pressure that would generate this hoop load is obtained

from the following expression [49]

p=—*% (4.3)

Simitses [50] presents a detailed discussion of the buckling of a thin circular ring
uniformly compressed by external pressure. When considering the behavior of the
pressure load as the ring buckles, Simitses describes three possible cases. In Case 1, the
pressure load is assumed to remain normal to the deflected surface. This loading is
referred to as a live pressure load. In Case 2, the pressure load is assumed to remain
parallel to its original direction. This loading is referred to as a dead pressure load. In
Case 3, the pressure load is assumed to always be directed toward the center of curvature
of the ring. This loading is referred to as a centrally directed pressure load. Only Cases 1

and 2 will be discussed in the present thesis.
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In Reference [50], Simitses presents in-plane and out-of-plane stability equations for

the thin circular ring which may be rewritten in the notation used in the present thesis as

g2 us
n +__ w’ ——— | — =0 4.4
22,2 R, pcr( 2 sz P2 4.4)
n
92,2 __Rzzz ~Por(RaWipz —up2)—p3 =0 4.5)

where p, and p, are the perturbation values of the applied pressure load in the buckled

state in the &,- and &,-directions, respectively. For the case of a live pressure load in

which the applied pressure is assumed to remain normal to the deflected surface, p, and

p, are (for small deformations)

u
P2 = —Pecr (W’2 __2) and p3 =0 (4.6)
R,

For the case of a dead pressure load in which the applied pressure is assumed to remain

parallel to its original direction, p, and p, are
p2 =0 and p3 =0 4.7)

Substituting Egs. (4.3) and (4.6) into Egs. (4.4) and (4.5), yields the following stability

equations for the case of live pressure loading:

Nypy +92 =0 (4.8)
y R2

ny) U2
——==2 _N W,9y ———— =0 4.9
q2.2 R, 22cr( 22 R, ] 4.9)
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Substituting Egs. (4.3) and (4.7) into Eqs. (4.4) and (4.5), yields the following stability

equations for the case of dead pressure loading:

Do = 3EI
o T 3
R2
Therefore,
3EI
Ny ==
Ccr R%

Do = 4EI
v
R
Therefore,
4E1
N22cr 5

(4.10)

4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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As discussed in Reference [49], resuits for the case of a long cylindrical tube uniformly

compressed by external pressure, may be obtained by considering an elemental ring of

unit width and using Egs. (4.12) through (4.15) with E replaced by E/(1-v?) and I

replaced by t*/12.
External pressure loads are not included in the present analysis. However, an
equivalent N,, loading may be calculated using Eq. (4.3). The present analysis treats the

applied loads as dead loads since no effort is made to modify the applied loads as the

plate deforms. The stability equations in the &, and &, directions, Egs. (2.11b) and

(2.11c) for the present analysis are written for a thin circular ring subjected to N,, loading

by ignoring any terms that involve N,,, §,, or derivatives with respect to &,. These

equations are

q2 Nop» u, W,
Nypy+22e—22 y ——2 | _FN,| —2+u =0 4.16
22,2 R, Rz[ 2 Rz) k. 22(Rz 2,22) (4.16)
nyo us2 ENp [ w
= =22 _Noy| Wypg ——5 |4 =—2=| 4 =0 4.17)
q2.2 R, 22( 2 Rz) R, [R2 2,2] (

Comparing Egs. (4.9), (4.11), and (4.17), reveals that if physical strains are used in the
present analysis (i.e., E = 0), the out-of-plane stability equation is identical to that given
by Simitses for both live and dead pressure loads. Furthermore, the in-plane stability
equation for the live pressure load case is recovered by the present analysis if the N,,
term is neglected in Eq. (4.16). The dead pressure load case is seen to be recovered when

the N,, term is included in Eq. (4.16). Comparing Eqs. (4.6), (4.7), and (4.16), shows that
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for the case of physical strains, the remaining term involving N,, is actually equivalent to

the component of a live pressure load in the &, direction (see Eq. (4.6)).

Buckling results for this example are presented in Table 10. The VICONOPT results
presented in this table are for physical strains. As previously discussed, the VICONOPT
result when the N,, term is neglected in the in-plane stability equation corresponds to the
case of live pressure load, and the VICONOPT result when the N, term is included in the
in-plane stability equation corresponds to the case of dead pressure load. The results for
physical strains for the segmented-plate analysis always equal those for the case of dead
pressure load since the N,, term in the in-plane stability equation also involves 1/R, and it
therefore drops out of that equation altogether. These results illustrate the dramatic effect
that the N,, and N,, terms in the in-plane stability equations can have on the buckling

results for curved plates.

4.5 Design Optimization of a Cylindrical Shell Subject to Uniaxial
Compression

The final example utilizes the new curved-plate analysis with the design optimization
capability of VICONOPT to perform a structural optimization of two different cylindrical
shell concepts subject to uniform axial compression (N, loading). The two concepts are
solid-wall construction and honeycomb-sandwich construction. The geometry of this
example problem is shown in Figure 4.14. As shown in the figure, the facesheets of the
honeycomb-sandwich concept are aluminum, and the core is Korex™ aramid paper
honeycomb core [51]. The solid-wall concept is aluminum. The material properties used
for the facesheets and core are presented in Table 9.

Before results for this example are presented, a discussion of the modeling technique
used to model this cylinder is presented. An analysis of a complete cylinder was

performed using only one plate element with the new curved-plate analysis capability in
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VICONOPT. The cylinder is modeled by defining a repetitive cross-section in which
there is only one node that is connected to itself. However, numerical problems were
encountered when analyzing closed cylinders with very small wavelengths. The
following procedure was used to avoid this problem. First, a 45° arc segment is defined.
Second, a 90° arc segment is defined as a substructure by connecting the original 45° arc
segment to itself. Similarly, a 180° arc segment is constructed from two 90° arcs.
Finally, a 360° arc is constructed from two 180° arcs. This substructure is then used to
define the repetitive cross-section of the cylinder as previously discussed. This modeling
technique is used for all closed cylinders analyzed in the present thesis, and no numerical
problems were encountered when using this technique.

The design variables for the structural optimization are the thicknesses of the
facesheets and the core for the sandwich concept and the wall thickness for the solid-wall
construction. There is no minimum-gage restriction for any design variables. The
nominal values for these variables are 0.1 in., 0.5 in., and 0.1 in., respectively. The

design constraints are that the strain in the facesheets or the solid wall cannot exceed

0.005 in/in and that the stress in the core cannot exceed 115 psi in the &, -direction and 55

psi in the &,-direction. The results of this study, including the mass of the optimized

cylinder and the final values of the design variables are given in Table 11 for the
honeycomb-sandwich concept and in Table 12 for the solid-wall concept. Results from
both CPT and SDPT are given in these tables. The optimized mass values are also
plotted as a function of the applied loading in Figure 4.15. As seen in the tables and the
figure, the values for optimized mass obtained using CPT are slightly less than those for
SDPT for the honeycomb-sandwich cylinder as the applied loading is increased.
However, the values for core thickness obtained using CPT are significantly less than
those for SDPT for the honeycomb-sandwich cylinder as the applied loading is increased.

These results are expected because CPT results in an overly stiff approximation since the
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effects of transverse-shear deformation are neglected. This overly stiff approximation
results in higher buckling loads for a given core thickness. Therefore, the core thickness
and the optimum mass obtained is less than that obtained using SDPT. The optimized
mass values for the solid-wall construction are much greater than those for the
honeycomb-sandwich construction. The results for CPT and SDPT are nearly identical

for the solid-wall construction, as expected.
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CHAPTER V

CONCLUDING REMARKS

The VICONOPT computer code is an exact analysis and optimum design program
that includes the buckling and vibration analyses of prismatic assemblies of flat, in-plane-
loaded anisotropic plates. In the present thesis, the capability to analyze curved-plate
segments exactly has been added to the VICONOPT code. Non-linear curved-plate
equilibrium equations have been formulated using the principle of virtual work, and
linearized stability equations that describe the response of the plate just after buckling
occurs were derived following the application of several simplifying assumptions.
Finally, modifications to these equations were made to allow the reference surface of the
plate to be located at a distance z, from the centroidal surface.

The analysis methodology described in the present thesis improves upon the existing
methodology in the VICONOPT code (referred to herein as the segmented-plate analysis)
which requires that curved-plate segments be subdivided into several flat-plate elements
that must be subsequently joined at their longitudinal edges to approximate the curved-
plate geometry. The new analysis formulation allows either classical plate theory (CPT)
or first-order shear deformation plate theory (SDPT) to be used. Furthermore, anisotropic
laminates having fully populated A, B, and D stiffness matrices may be analyzed. The
analysis described in the present thesis is an example of an exact finite-strip method
(FSM) since it uses a stiffness matrix that is derived by direct solution to the stability
equations.

One additional capability that has been incorporated into the VICONOPT code as part
of the present thesis is the option to use plate elements (flat or curved) that are based
upon nonlinear strain-displacement relations that contain terms from either physical or

tensorial strain measures. A second capability that has been added is the ability to
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include the effect of terms associated with in-plane transverse and in-plane shear loading
in the in-plane stability equations. The original VICONOPT code neglects these terms.

Results from the present curved-plate analysis capability compare very well with a
closed-form solution and the existing segmented-plate analysis for the buckling of a long
isotropic cylinder. The present analysis also compares well with results from the
literature for symmetrically laminated curved plates with widely varying curvatures and
with unsymmetrically laminated plates that include the effect of extensional-bending and
shear-extension coupling. No appreciable effects of using tensorial versus physical
strains are noted in these examples. The present curved-plate analysis was also shown to
require significantly less computational effort than the segmented-plate analysis. An
alternate approach for the segmented-plate analysis that offers additional computational
savings for certain classes of problems has been investigated. However, this approach
requires greater user effort, and it is currently not implemented in the VICONOPT code.

A significant effect of either including or neglecting the terms associated with an
applied in-plane transverse loading (i.e., N,, loading) in the in-plane stability equations
was noted when analyzing a long cylindrical tube subjected to uniform external pressure.
The symmetry of the buckling mode for this problem allowed it to be modeled as a half
cylinder, and the pressure load was simulated with an equivalent hoop (N,,) loading. The
buckling results for this problem were shown to change by a factor of 3/4 when the terms
associated with the N,, loading were neglected in the in-plane stability equations. This
result illustrates the effect that the treatment of the in-plane stability equations can have
on the buckling results for curved plates.

Finally, the present curved-plate analysis was used to conduct a design-optimization
study of two different cylindrical shells subject to uniform axial compression (N,,
loading). One shell was constructed from a honeycomb-sandwich wall construction, and
the other was a solid-wall construction. The values of mass for the optimized solid-wall

design were consistently higher than those for the honeycomb-sandwich construction.
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However, there was no difference between results using CPT and SDPT for the solid-wall
cylinder. The values of mass for the optimized honeycomb-sandwich cylinder using CPT
were slightly less than those for SDPT as the applied loading was increased. However,
the values of core thickness for the optimized honeycomb-sandwich cylinder using CPT
were significantly less than those for SDPT as the applied loading was increased. This
trend occurred because CPT results in an overly stiff approximation since the effects of
transverse-shear flexibility are neglected. This overly stiff approximation results in
higher buckling loads and, thus, a lower optimum mass.

One area for future work includes retaining the curvature terms in the longitudinal
direction and implementing the capability to analyze shells of revolution. The analysis
can also be modified to allow vibration analyses to be performed. Another enhancement
that can be made to the present analysis is to remove the restriction that when the terms
associated with in-plane transverse and in-plane shear loading are retained in the in-plane

stability equations, the centroidal surface and reference surface must coincide.

58



10.

11.

12.

13.

REFERENCES

Williams, F. W.; Kennedy, D.; Anderson, M. S.; and Edwards, D. A.: “User Manual
for VICONOPT,” Release 1.3, April 1996.

Anderson, M. S.; and Kennedy, D.: “Inclusion of Transverse Shear Deformation in
the Exact Buckling and Vibration Analysis of Composite Plate Assemblies,”
Presented at the ATAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural
Dynamics and Materials Conference, Dallas, Texas, April 13-15, 1992. AIAA Paper
No. 92-2287.

Cheung, Y. K.: The Finite Strip Method in Structural Analysis, Pergamon Press,
Oxford, England, 1976.

Zienkiewicz, O. C.. The Finite Element Method in Engineering Science, McGraw
Hill, London, England, 1971.

Cheung, Y. K.: “The Finite Strip Method in the Analysis of Elastic Plates with Two

Opposite Simply Supported Ends,” Proceedings of the Institute of Civil Engineers,
Vol. 40, No. 1, 1968.

Cheung, M. S.; and Cheung, Y. K.: “Natural Vibrations of Thin Flat-Walled
Structures With Different Boundary Conditions,” Journal of Sound and Vibration,
Vol. 18, 1971, pp. 325-337.

Przemieniecki, J. S.: “Finite Element Structural Analysis of Local Instability,”
AIAA Journal, Vol. 11, 1973, pp. 33-39.

Plank, R. J.; and Wittrick, W. H.: “Buckling Under Combined Loading of Thin Flat-
Walled Structures By a Complex Finite-Strip Method,” International Journal for
Numerical Methods in Engineering, Vol. 8, 1974, pp. 323-339.

Dawe, D. J.: “Static Analysis of Diaphragm-Supported Cylindrical Shells Using a

Curved Finite Strip,” International Journal for Numerical Methods in Engineering,
Vol. 11, 1977, pp. 1347-1364.

Dawe, D. J.: “Finite Strip Buckling Analysis of Curved Plate Assemblies Under

Biaxial Loading,” International Journal for Numerical Methods in Engineering, Vol.
13, 1977, pp. 1141-1155.

Morris, 1. R.; and Dawe, D. J.: “Free Vibration of Curved-Plate Assemblies With
Diaphragm Ends,” Journal of Sound and Vibration, Vol. 73, 1980, pp. 1-17.

Dawe, D. J.: “Finite Strip Models for Vibration of Mindlin Plates,” Journal of
Sound and Vibration, Vol. 59, 1978, pp. 441-452.

Mindlin, R. D.: “Influence of Rotatory Inertia and Shear on Flexural Motions of
Isotropic Elastic Plates,” Journal of Applied Mechanics, Vol. 18, 1951, pp. 31-38.

59



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Roufaeil, O. L.; and Dawe, D. J.: “Vibration Analysis of Rectangular Mindlin Plates
by the Finite Strip Method,” Computers & Structures, Vol. 12, 1980, pp. 833-842.

Dawe, D. J.; and Roufaeil, O. L.: “Buckling of Rectangular Mindlin Plates,”
Computers & Structures, Vol. 15, 1982, pp. 461-471.

Craig, T. J.; and Dawe, D. J.: “Flexural Vibration of Symmetrically Laminated
Composite Rectangular Plates Including Transverse Shear Effects,” International
Journal of Solids and Structures, Vol. 22, No. 2, 1986, pp. 155-169.

Dawe, D. J.; and Craig, T. J.: “The Vibration and Stability of Symmetrically
Laminated Composite Rectangular Plates Subjected to In-Plane Stresses,”
Composite Structures, Vol. 5, 1986, pp. 281-307.

Craig, T. J.; and Dawe, D. J.: *“Vibration of Shear-Deformable Laminated Plate
Structures by the Finite Strip Method,” Computers & Structures, Vol. 27, No. 1,
1987, pp. 61-72.

Dawe, D. J.; and Craig, T. J.: “Buckling and Vibration of Shear Deformable

Prismatic Plate Structures by a Complex Finite Strip Method,” International Journal
of Mechanical Sciences, Vol. 30, No. 2, 1988, pp. 77-99.

Dawe, D. J.; and Peshkam, V.: “Buckling and Vibration of Finite-Length Composite
Prismatic Plate Structures With Diaphragm Ends, Part I: Finite Strip Formulation,”

Computer Methods in Applied Mechanics and Engineering, Vol. 77, 1989, pp. 1-30.

Peshkam, V.; and Dawe, D. J.: “Buckling and Vibration of Finite-Length Composite
Prismatic Plate Structures With Diaphragm Ends, Part II: Computer Programs and

Buckling Applications,” Computer Methods in Applied Mechanics and Engineering,
Vol. 77, 1989, pp. 227-252.

Dawe, D. J.; and Peshkam, V.. “Buckling and Vibration of Long Plate Structures by

Complex Finite Strip Methods,” International Journal of Mechanical Sciences, Vol.
32, No. 9, 1990, pp. 743-766.

Wittrick, W. H.: “A Unified Approach to the Initial Buckling of Stiffened Panels in
Compression,” The Aeronautical Quarterly, Vol. 19, 1968, pp. 265-283.

Wittrick, W. H.; and Curzon, P. L. V.: “Stability Functions for the Local Buckling
of Thin Flat-Walled Structures with the Walls in Combined Shear and
Compression,” Aeronautical Quarterly, November 1968, vol. 19, pp. 327-351.

Wittrick, W. H.: “General Sinusoidal Stiffness Matrices for Buckling and Vibration
Analysis of Thin Flat-Walled Structures,” International Journal of Mechanical
Sciences, Vol. 10, 1968, pp. 949-966.

Smith, C. S.: “Bending, Buckling and Vibration of Orthotropic Plate-Beam
Structures,” Journal of Ship Research, Vol. 12, 1968, pp. 249-268.

60



27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Williams, F. W.: “Computation of Natural Frequencies and Initial Buckling Stresses
of Prismatic Plate Assemblies,” Journal of Sound and Vibration, Vol. 21, 1972, pp.
87-106.

Wittrick, W. H.; and Williams, F. W.: “Buckling and Vibration of Anisotropic or
[sotropic Plate Assemblies Under Combined Loadings,” International Journal of
Mechanical Sciences, Vol. 16, 1974, pp. 209-239.

Wittrick, W. H.; and Williams, F. W.: “An Algorithm for Computing Critical
Buckling Loads of Elastic Structures,” Journal of Structural Mechanics, Vol. 1,
1973, pp. 497-518.

Viswanathan, A. V.; and Tamekuni, M.: “Elastic Buckling Analysis For Composite
Stiffened Panels and other Structures Subjected to Biaxial Inplane Loads,” NASA
CR-2216, 1973.

Viswanathan, A. V.; Tamekuni, M.; and Tripp, L. L.: “Elastic Stability of Biaxially
Loaded Longitudinally Stiffened Composite Structures,” Proceedings of the
AIAA/ASME/SAE 14th Structures, Structural Dynamics, and Materials Conference,
Williamsburg, VA, March 20-22, 1973. AIAA Paper No. 73-367.

Viswanathan, A. V.; Tamekuni, M.; and Baker, L. L.: “Elastic Stability of
Laminated, Flat and Curved, Long Rectangular Plates Subjected to Combined
Loads,” NASA CR-2330, 1974.

Williams, F. W.; and Anderson, M. S.: “Incorporation of Lagrangian Multipliers
into an Algorithm for Finding Exact Natural Frequencies or Critical Buckling
Loads,” International Journal of Mechanical Sciences, Vol. 25, 1983, No. 8, pp.
579-584.

Anderson, M. S.; Williams, F. W.; and Wright, C. J.: “Buckling and Vibration of
any Prismatic Assembly of Shear and Compression Loaded Anisotropic Plates with

an Arbitrary Supporting Structure,” International Journal of Mechanical Sciences,
Vol. 25, No. 8, 1983, pp. 585-596.

Kennedy, D.; and Williams, F. W.: “Vibration and Buckling of Anisotropic Plate
Assemblies with Winkler Foundations,” Journal of Sound and Vibration, Vol. 138,
No. 3, 1990, pp. 501-510.

Williams, F. W.; Kennedy, D.; and Anderson, M. S.: “Analysis Features of
VICONOPT, an Exact Buckling and Vibration Program for Prismatic Assemblies of
Anisotropic Plates,” Proceedings of the 31st AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Long Beach, California,
pp- 920-929, April 1990. AIAA Paper 90-0970.

Butler, R.; and Williams, F. W.: “Optimum Design Features of VICONOPT, an
Exact Buckling and Vibration Program for Prismatic Assemblies of Anisotropic
Plates,” Proceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, Long Beach, California, pp. 1289-
1299, April 1990. AIAA Paper 90-1068.

61



38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

S1.

Sanders, J. L., Jr.: “An Improved First-Approximation Theory For Thin Shells,”
NASA TR R-24, 1959.

Sanders, J. L., Jr.: “Nonlinear Theories for Thin Shells,” Quarterly of Applied
Mathematics, Vol. 21, 1963, pp. 21-36.

Wolfram, S.: MATHEMATICA: A System for Doing Mathematics by Computer,
Addison-Wesley Publishing Company, Inc., Redwood City, CA, 1988.

Novozhilov, V. V.: Foundations of the Nonlinear Theory of Elasticity, Graylock
Press, Rochester, New York, 1963.

Stein, M.: “Nonlinear Theory for Plates and Shells Including the Effects of
Transverse Shearing,” AIAA Journal, Vol. 24, No. 9, September 1986, pp. 1537-
1544.

Shames, 1. H. and Dym, C. L.: Energy and Finite Element Methods in Engineering
Mechanics, Hemisphere Publishing Corporation, New York, New York, 1985.

Cohen, G. A.: “Transverse Shear Stiffness of Laminated Anisotropic Shells,”

Computer Methods in Applied Mechanics and Engineering, Vol. 13, 1978, pp. 205-
220.

Jones, R. M.: Mechanics of Composite Materials, Hemisphere Publishing Corp.,
New York, New York, 1975.

Langhaar, H. L.: Energy Methods in Applied Mechanics, Kreiger Publishing
Company, Malabar, Florida, 1989.

Cohen, G. A.: “FASOR - A Second Generation Shell of Revolution Code,”
Computers & Structures, Vol. 10, 1979, pp. 301-309.

Shames, I. H.: Mechanics of Deformable Solids, Kreiger Publishing Company,
Malabar, Florida, 1985.

Timoshenko, S. P.; and Gere, J. M.: Theory of Elastic Stability, McGraw-Hill Book
Company, New York, New York, 1961.

Simitses, G. J.: An Introduction to the Elastic Stability of Structures, Kreiger
Publishing Company, Malabar, Florida, 1986.

Anonymous: DuPont KOREX™ Honeycomb Core for High Performance
Applications, DuPont Technical Data Specification Sheet.

62



63

APPENDIX A

MATRICES FOR DETERMINING CHARACTERISTIC ROOTS

The eigenvalues of matrix R in Eq. (3.16a) are the characteristic roots of the
differential equations describing the behavior of the plate. The 10-by-10 matrix R is

calculated from the matrices T and P as shown in Eq. (3.16b). The non-zero elements of

the T matrix are

*

* * *
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% *
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The underlined terms given above and subsequently are those terms that drop out of the
equation when the effects of N,, and N, in the in-plane stability equations are neglected.

The non-zero elements of the P matrix are
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where

b
o=—

A
S = 1— h88N22

The expressions for the elements of the T and P matrices for the case of classical

plate theory are obtained by setting the transverse-shear strains, 7,, and ¥,,, equal to zero

and using the resulting expression ¢; =w | (recall that l—ll— equals to zero). The
1

partially inverted stress-strain relations given in Eq. (3.11), are modified such that m,,

and K, are interchanged. For the classical case, only four stability equations, Eqgs.

(2.16a), (2.16b), (2.16c), and (2.18a) are used since Eq. (2.18b) is satisfied by
incorporation into the final form of Eq. (2.16c). The same steps used for the transverse-
shear case are followed to generate T and P matrices of order eight. The elements of the
T and P matrices with a superscript * given previously for the transverse-shear case also
apply for the classical case if 1 is subtracted from any index greater than 4. The non-zero

elements of the T matrix that are not given in the results for transverse shear are

o 2 |
te,1 =E(E H hy3N23Nj; =G H hyNj; —E No» —E[Eh%NZZ —§h26N12])

o 1
te2 = E(E H hyN»Njp -G H hysN%, +G Ny _E;[Eh%NZZ "Qh36N12]]

200 20
tg) = T(Eh:sesz —GhyNpy) tgo = —b—(Ehzﬁsz —Gh3eNp5)

The non-zero elements of the P matrix that are not given in the results for transverse

shear are
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Table 1. Material properties for boron/epoxy plies and 2024 aluminum (SI units).
Material E11x10-10, | Eppx10-10, | Giox10-10, |  vi; | p, kg/m3
N/m’ N/m’ N/m®
Boron/epoxy 20.69 1.86 0.48 0.21 2006.8
Aluminum 2024 7.38 7.38 2.76 0.33 2768.0
b2
Table 2. Geometric parameters used to vary the curvature parameter, R
2
b2
e b, cm. R,, cm.
Rot B, degrees
I 24.4002 5760.3570 0.25264
5 24.4005 1152.1180 1.2632
10 25.4020 576.12905 2.5262
30 25.4185 192.2917 7.5738
50 25.4513 115.67310 12.6067
100 25.6036 58.53098 25.0633
300 27.1026 21.86161 71.0315
500 29.6186 15.66554 108.3281
700 32.6900 13.63059 1374115
1000 37.7873 12.75046 169.8018
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Figure 1.1 Typical longitudinally stiffened plate structures.

N

Figure 1.2 Segmented representation of curved plate geometry currently used by
VICONOPT.
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Figure 2.1. Curved-plate geometry and sign convention for buckling displacements,
rotations, moments, and forces.
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Figure 2.2 Sign convention for applied in-plane loads and relation of reference
surface to centroidal surface.
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Figure 2.3 Curved-laminate geometry.
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(a) plates 1 and 2 coplanar
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(c) plate 2 rotated to arbitray angle, 6

Figure 3.1 Displacements and rotations at a typical plate junction.
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viz = 0.33
p = 0.1lbfin3

Figure 4.1 Long isotropic (aluminum) cylinder subjected to uniaxial
compression.
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/— Theoretical result (Ref. [48])
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Figure 4.2 Convergence of VICONOPT segmented-plate results as a function of the
number of segments used in the approximation.
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Segmented-plate theory CPU times normalized
with respect to curved-plate theory time
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Figure 4.3 Normalized CPU time requirements for the segmented-plate approach
as a function of the number of segments used in the approximation.
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N1

Figure 4.4 Positive applied in-plane loads on a long curved plate.

nominal ply
thickness = 0.014 cm.

Boron/epoxy
[0/90/+45]s

- 25.4 cm -

Figure 4.5 Symmetrically laminated long curved plate with clamped longitudinal
edges subjected to applied in-plane loads.
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N1
. SLLLED Curved-plate theory, physical strains
3F = — Segmented-plate theory, physical strains
o} == - Curved-plate theory, tensorial strains
— Reference [32]

10° |
6F
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Nu, 3
N/m 2}
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oF
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103 L ' lllllll 'l ] lllllll A 1 L llllll

2 3 4567 2 3 4567 3 4567
1 10 100 1000

Curvature parameter, b2/Rpt

Figure 4.6 Critical value of stress resultant Ny; for buckling of a symmetrically
laminated curved plate with clamped longitudinal edges.
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—~ — Segmented-plate theory, physical strains
3F - - - Curved-plate theory, tensorial strains
—— Reference [32]

3 L 1 LA L 0 1 l 1 A 1 Ll A
10 2 3 4567 2 3 4 567
Curvature parameter, b2/Rt

Figure 4.7 Critical value of stress resultant N2y for buckling of a symmetrically
laminated curved plate with clamped longitudinal edges.
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9l
S Curved-plate theory, physical strains
7 — — Segmented-plate theory, physical strains
- - - Curved-plate theory, tensorial strains
6F  —— Reference [32]

Ni2

cr,

N/m

Curvature parameter, b2/Rjt

Figure 4.8 Critical value of stress resultant N1, for buckling of a symmetrically
laminated curved plate with clamped longitudinal edges.
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! Curved-plate theory, physical strains

- — Segmented-plate theory, physical strains
- - - Curved-plate theory, tensorial strains

r — Reference [32]

Curvature parameter, b2/Rat

Figure 4.9 Critical value of stress resultants Njj = N2z = N3 for buckling of a

symmetrically laminated curved plate with clamped longitudinal edges.
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yandw=0
on longitudinal edges
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Section A-A

+450 B/E

/

0.014 cm.
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SASSASSSSSSISIS IS ST

+450 B/E :

-450 B/E ) T

Aluminum 0.0508 cm.

Figure 4.10 Unsymmetrically laminated aluminum and boron/epoxy (B/E)
curved plate with simply supported edges subjected to applied in-
plane loads.
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250,000 .. Curved-plate theory, physical strains
- — Segmented-plate theory, physical strains
- - - Curved-plate theory, tensorial strains
200,000 """ Reference [32]
Nit,, 150,000 |-
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| ] 1 I | | |
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Number of boron/epoxy plies

Figure 4.11  Critical value of stress resultant Ny; for buckling of an

unsymmetrically laminated aluminum and boron/epoxy (B/E)
curved plate with simply supported longitudinal edges.
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----- Curved-plate theory, physical strains oy
120,000 =~~~ Segmented-plate theory, physical strains
— — Curved-plate theory, tensorial strains
— Reference [32]
100,000
Ni2 . 80,000}
N/m 11 VICON
All VI OPT
60,000 - results
40,000 |-
Reference [32]
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1 1 1 | | i ]
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Figure 4.12  Critical value of stress resultant N2 for buckling of an

unsymmetrically laminated aluminum and boron/epoxy (B/E)
curved plate with simply supported longitudinal edges.



External pressure, p

N

Ry =10.01in.
t=0.11n.
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1 rd A
u; restrained along longitudinal edges
N»», equivalent Na22, equivalent
hoop load E = 100 x 106psi hoop load
vizg = 0.33
p = 0.11b/in3

Figure 4.13  Isotropic (aluminum) long cylindrical tube subjected to uniform
external pressure loading.
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Simply supported
ends
Nn
4 240in.—™
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Figure 4.14 Cylindrical shell subjected to uniform axial compression (N1 loading).
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Figure 4.15 Optimized cylinder mass as a function of the applied loading
for a cylindrical shell.
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